On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
نویسندگان
چکیده
We carry out fluid-structure interaction simulations of self-propelled virtual swimmers to investigate the effects of body shape (form) and kinematics on the hydrodynamics of undulatory swimming. To separate the effects of form and kinematics, we employ four different virtual swimmers: a carangiform swimmer (i.e. a mackerel swimming like mackerel do in nature); an anguilliform swimmer (i.e. a lamprey swimming like lampreys do in nature); a hybrid swimmer with anguilliform kinematics but carangiform body shape (a mackerel swimming like a lamprey); and another hybrid swimmer with carangiform kinematics but anguilliform body shape (a lamprey swimming like a mackerel). By comparing the performance of swimmers with different kinematics but similar body shapes we study the effects of kinematics whereas by comparing swimmers with similar kinematics but different body shapes we study the effects of form. We show that the anguilliform kinematics not only reaches higher velocities but is also more efficient in the viscous (Re approximately 10(2)) and transitional (Re approximately 10(3)) regimes. However, in the inertial regime (Re=infinity) carangiform kinematics achieves higher velocities and is also more efficient than the anguilliform kinematics. The mackerel body achieves higher swimming speeds in all cases but is more efficient in the inertial regime only whereas the lamprey body is more efficient in the transitional regime. We also show that form and kinematics have little overall effect on the 3-D structure of the wake (i.e. single vs double row vortex streets), which mainly depends on the Strouhal number. Nevertheless, body shape is found to somewhat affect the small-scale features and complexity of the vortex rings shed by the various swimmers.
منابع مشابه
Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion
Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex s...
متن کاملHydrodynamic Performance of an Undulatory Robot: Functional Roles of the Body and Caudal Fin Locomotion
Both body undulation and caudal fin flapping play essential locomotive roles while a fish is swimming, but how these two affect the swimming performance and hydrodynamics of fish individually is yet to be known. We implemented a biomimetic robotic fish that travel along a servo towing system, which can be regarded as “treadmill” of the model. Hydrodynamics was studied a...
متن کاملSimulation and optimization of live fish locomotion in a biomimetic robot fish
This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...
متن کاملEscaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
Fish swimming has often been simplified into the motions of a two-dimensional slice through the horizontal midline, as though fishes live in a flat world devoid of a third dimension. While fish bodies do undulate primarily horizontally, this motion has important three-dimensional components, and fish fins can move in a complex three-dimensional manner. Recent results suggest that an understandi...
متن کاملKinematics and hydrodynamics of swimming in the mayfly larva.
The kinematics and hydrodynamics of free-swimming mayfly larvae (Chloeon dipterum) were investigated with the aid of a simple wake visualisation technique (tracer dyes) and drag measurements on dead insects. The basic swimming movement consists of a high-amplitude dorso-ventral undulation and, during continuous swimming, this produces a wake of ring vortices shed alternately to the dorsal and v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 1 شماره
صفحات -
تاریخ انتشار 2010